

Jigsaw 2D

1. [Hore Section 2.2] Determine how many distinct chemical shifts would you expect to find in the ^{13}C spectra of the following isomers of $\text{C}_4\text{H}_{10}\text{O}$. *See also: Jigsaws 2A.1, 2B.3, 2C.2, and 2E.1.*
 - a. Butan-1-ol
 - b. Butan-2-ol
 - c. 2-methylpropan-1-ol
 - d. 2-methylpropan-2-ol
2. * [Week 2 Slides 42-43] A sample is instantaneously plunged into a spectrometer (i.e., the spins are randomly oriented at $t = 0$). After a period τ , a 90° pulse is applied along the y-axis and the signal is measured. For this sample, $T_1 = 1.2$ s. What percentage of the maximum signal (M_x) is along the x-axis for each of the following τ lengths?
 - a. 0 s
 - b. 1.2 s
 - c. 6 s
 - d. 60 s

e. Plot the intensity of the signal along z as a function of time from 0-60 s.
3. [Hore Section 2.4] Why do protons in aromatic rings resonate at a high chemical shift?